
Do
Robots
Dream
of
Perfectly
Elastic
Collisions?
Ifunanyachukwu E. Aniemeka, ianiemeka@gmail.com
Sept 6, 2018

Introduction

Human beings possess the ability to make predictions about how objects in the physical world
behave without necessarily understanding the laws of Newtonian mechanics. We develop this
intuition fairly early on in our development.

We understand that if we throw a ball into the air, it will travel in a roughly parabolic trajectory
before hitting the ground. We know that if we roll that same ball across the surface of a table,
it will eventually come to a stop. Moreover, we understand if we throw it towards a wall, it will
bounce back. We know all of these things without necessarily knowing the equation for the
gravitational force between two bodies, or the law of conservation of momentum, etc.

In fact, we may be able to predict the motion of objects despite an incorrect understanding of
physics. If you were to ask a random person whether a bowling ball or a feather falls to the
earth faster in a vacuum, many people would say the bowling ball does. However, we know for
a fact that objects under the influence of gravity alone, as two objects in a vacuum would be,
fall towards the earth at the same acceleration - 9.8 m/s/s.

Moreover, we are able to extrapolate from previous experience the behavior of unfamiliar
objects. We don't need to see every variety of object thrown into the air to be able to give a
rough estimate of its trajectory.

The motive behind my project was to discover whether a similar sort of intuition could be
cultivated in a neural network via the same method humans use to develop physical intuition -
observation of and interaction with the physical world. The proposed network would be able to
make physical predictions without definitions of concepts like momentum, force, or friction
being built-in. Furthermore, I'm interested in how few and what sorts of examples I need to
provide to a network for it to understand not only the behavior of the objects present in the
samples, but also for it to extrapolate to similar situations.

To train my network, I asked it to perform a task that most human beings would find fairly
simple. Given two frames of a video in which some number of objects are moving, predict the
positions of those objects in the following frame.

mailto:ianiemeka@gmail.com

Let's say we have a recording of circles moving within a closed space and I showed you two
sequential frames:

frame
1
at
time
t=0

frame
2
at
time
t=1

You're likely able to roughly intuit the vectors describing the motion of the circles.

difference
between
frames
1
and
2

Having intuited the circles' motion vectors, you would then be able to guess at the position of
the circles in the next frame.

frame
3
circles
outlined
in
red

Related
Work

There have been previous efforts to train neural networks with physical intuition. In their paper
'Learning to Poke by Poking: Experiential Learning of Intuitive Physics', Agrawal et al. describe
training a Baxter robot to interact with its environment so as to produce a particular result. The
robot is directed to poke at one to three of sixteen objects placed on a table in front of it.
Objects can be pushed in any direction and the robot can poke at any part of an object. The
latter allowance means that sometimes, when an object is poked, it rotates instead of or in
addition to changing position.

The network implements forward and inverse models of the objects' movements. The forward
model, is trained to predict the state the object will be in given the current state and an action,
i.e. a poke. The inverse model predicts the appropriate poke given the current and target
state.

The authors make use of a Siamese convolutional network, i.e. a pair of connected
convolutional networks. A training sample consists of the image of an object at time , an

image of the same object at the next time step, and the poke (which is defined by the
poke point on the object, poke direction, and poke length) that resulted in the change in the

object's state. One of the subnetworks receives and the other receives .

To train the inverse model, the results of the subnetworks, and , are concatenated
and passed as input to fully connected layers that predict the poke point, length, and angle of
the poke required to get from the state at to the state at . This prediction can then be
compared to the poke in the sample. The forward model is trained by passing the poke
element of the sample and through fully connected layers. The result of this part of the
network can then be compared to .

Their method represents the state of objects using tuples of data or latent feature

https://arxiv.org/pdf/1606.07419.pdf

representations. Images are present in the sample, but afterwards, only the feature
representations are used to perform analysis. In contrast, my own network performs a per-
pixel analysis in which the result of the network, an image, is compared to the target image.

In 'FlowNet: Learning Optical Flow with Convolutional Networks', the authors train a network
to produce optical flow fields from paired images. They developed two architectures -
FlowNetSimple and FlowNetCorr, of which I will only discuss the former as it is most closely
related to my own work. Two frames are stacked together and passed through first several
convolution layers, then a series of deconvolution layers. The output of the network is
compared against the known optical flow field for the two images.

My own work does something quite similar. The network I've built is, instead, asked to
produce the next frame, given two adjacent frames.

Method

Data

The data was generated using the matter.js physics engine. The environment constructed is a
black square bounded by four gray walls. Within the square, anywhere between one to five
circles are set in motion. The circles can collide with one another as well as the walls. Each
circle is initialized with a random color, initial position, and velocity.

http://brm.io/matter-js/

image
samples

Several factors are removed which would be present in a realistic simulation of the physical
world. The environment has no air or surface friction. In addition, all collisions are perfectly
elastic and none of the circles rotate.

A total of 4,235 training samples were generated from 121 recordings of the circles. From
each recording, 105 frames were extracted at a rate of 21 fps. Each frame is 28 x 28 pixels.

Model

The network accepts as input a pair of frames stacked such that the dimension of the result is
28 x 28 x 6. The second image is one timestep removed from the first. The target value is the
frame that follows the second.

frame
1
/
frame
2
/
target

frame
1
/
frame
2
/
target

frame
1
/
frame
2
/
target

The model is a modification of the standard autoencoder architecture. It's based on the

variational autoencoder constructed in Felix Mohr's article on VAEs. The encoder consists of
several convolution layers. We specify sixty-four 4 x kernels at each convolution layer. For the
purpose of preventing overfitting, following each of the convolution layers are dropout layers.
Including the dropout resulted in a 7.32% decrease in the mean squared error.

The number on the left is the epoch number. The number on the right is the mean squared
error.

The results using the test set:

In a standard convolutional autoencoder, the goal is for the network to reconstruct the input
image. The convolution layers in the standard case discern the features that are most
important for accurately reconstructing the input.

In contrast, the network above is trained to output the frame following the input, which is the
two proceeding frames stacked along the z-axis. The decoder specifies transposed
convolutional layers (also sometimes referred to as deconvolutional layers) that perform the
reconstruction.

After 30,000 epochs, the network achieved an MSE of about 0.325. However, when given
samples from the test set, the MSE increases to 7.664. This indicates that there is some
overfitting in the network. Future iterations of the network may have to use higher dropout
rates.

It appears that the network finds it simpler to predict the position of objects than their color.
This makes some intuitive sense. Position can be described with two numbers. The coloring of
each of the circles, however, requires a 3-dimensional matrix of numbers between 0 and 255.

Conclusion

The model demonstrates that it is possible for a network to understand rules around how
objects move in a simple physical environment. However, there are many paths left to be
explored.

For one, during data generation, the rate of frame extraction was set to 21. How accurate
would a network trained at a higher or lower frame extraction rate be? It would be illuminating
to compare the results of networks trained at various frame rates.

In addition, the network was trained in a square environment. There are plenty of other shapes
I could have chosen. It's not yet known how the network would respond if given two frames in
which circles are moving within a triangular space. I can't say for sure if the network is able to
generalize that the circles should bounce off of all walls, regardless of how those walls are
oriented. Similarly, it's unknown how the network would react to a barrier placed within the
square.

A number of elements were removed from the environment that would normally be present.
For one, there is no air friction. In a more realistic environment, the circles would slow down
over time, eventually coming to a stand still. Another area to explore would be training a
network to understand the motion of circles that undergo inelastic collisions.

One interesting variation on the network described in this paper would be a network that,
given two frames, could predict the position of the circles two or more frames ahead. At each
step, the network would use its previous prediction and the prediction before that to guess at
the next positions of the circles.

All of these explorations still involve artificial environments. Ultimately, the goal is to have a
network that can make predictions about objects in the real world. The real world is much
messier, of course. Surfaces are bumpy. Air friction must be accounted for. Objects are made
of all kinds of materials. It may not be possible, in many situations, to make a very accurate
prediction of where an object will be after some number of time steps. Having said that,
human beings can make rough estimates of real objects' motion. It would be interesting to
know if a neural network could make predictions better than those of humans.

References

[1] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to Poke by Poking:
Experiential Learning of Intuitive Physics. arXiv:1606.07419v2, 2017.

[2] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. van der Smagt, D.
Cremers, T. Brox. FlowNet: Learning Optical Flow with Convolutional Networks.
arXiv:1504.06852v2, 2015.

[3] F. Mohr. Teaching a Variational Autoencoder (VAE) to Draw MNIST Characters.
https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-
characters-978675c95776.

https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776

